| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444 | using UnityEngine;public static class Easings{	private const float PI = Mathf.PI; 	private const float HALFPI = Mathf.PI / 2.0f; 		/// <summary>	/// Easing Functions enumeration	/// </summary>	public enum Function	{		Linear,		QuadraticEaseIn,		QuadraticEaseOut,		QuadraticEaseInOut,		CubicEaseIn,		CubicEaseOut,		CubicEaseInOut,		QuarticEaseIn,		QuarticEaseOut,		QuarticEaseInOut,		QuinticEaseIn,		QuinticEaseOut,		QuinticEaseInOut,		SineEaseIn,		SineEaseOut,		SineEaseInOut,		CircularEaseIn,		CircularEaseOut,		CircularEaseInOut,		ExponentialEaseIn,		ExponentialEaseOut,		ExponentialEaseInOut,		ElasticEaseIn,		ElasticEaseOut,		ElasticEaseInOut,		BackEaseIn,		BackEaseOut,		BackEaseInOut,		BounceEaseIn,		BounceEaseOut,		BounceEaseInOut	}	public static float Interpolate(ref float currentTime, float duration, float deltaTime, bool reverse = false, Function function = Function.Linear)	{		currentTime = Mathf.Clamp01(currentTime + (deltaTime / duration) * (reverse ? -1 : 1));		return Interpolate(currentTime, function);	}	/// <summary>	/// Interpolate using the specified function.	/// </summary>	public static float Interpolate(float p, Function function)	{		switch(function)		{			default:			case Function.Linear: 					return Linear(p);			case Function.QuadraticEaseOut:		return QuadraticEaseOut(p);			case Function.QuadraticEaseIn:			return QuadraticEaseIn(p);			case Function.QuadraticEaseInOut:		return QuadraticEaseInOut(p);			case Function.CubicEaseIn:				return CubicEaseIn(p);			case Function.CubicEaseOut:			return CubicEaseOut(p);			case Function.CubicEaseInOut:			return CubicEaseInOut(p);			case Function.QuarticEaseIn:			return QuarticEaseIn(p);			case Function.QuarticEaseOut:			return QuarticEaseOut(p);			case Function.QuarticEaseInOut:		return QuarticEaseInOut(p);			case Function.QuinticEaseIn:			return QuinticEaseIn(p);			case Function.QuinticEaseOut:			return QuinticEaseOut(p);			case Function.QuinticEaseInOut:		return QuinticEaseInOut(p);			case Function.SineEaseIn:				return SineEaseIn(p);			case Function.SineEaseOut:				return SineEaseOut(p);			case Function.SineEaseInOut:			return SineEaseInOut(p);			case Function.CircularEaseIn:			return CircularEaseIn(p);			case Function.CircularEaseOut:			return CircularEaseOut(p);			case Function.CircularEaseInOut:		return CircularEaseInOut(p);			case Function.ExponentialEaseIn:		return ExponentialEaseIn(p);			case Function.ExponentialEaseOut:		return ExponentialEaseOut(p);			case Function.ExponentialEaseInOut:	return ExponentialEaseInOut(p);			case Function.ElasticEaseIn:			return ElasticEaseIn(p);			case Function.ElasticEaseOut:			return ElasticEaseOut(p);			case Function.ElasticEaseInOut:		return ElasticEaseInOut(p);			case Function.BackEaseIn:				return BackEaseIn(p);			case Function.BackEaseOut:				return BackEaseOut(p);			case Function.BackEaseInOut:			return BackEaseInOut(p);			case Function.BounceEaseIn:			return BounceEaseIn(p);			case Function.BounceEaseOut:			return BounceEaseOut(p);			case Function.BounceEaseInOut:			return BounceEaseInOut(p);		}	}		/// <summary>	/// Modeled after the line y = x	/// </summary>	static public float Linear(float p)	{		return p;	}		/// <summary>	/// Modeled after the parabola y = x^2	/// </summary>	static public float QuadraticEaseIn(float p)	{		return p * p;	}		/// <summary>	/// Modeled after the parabola y = -x^2 + 2x	/// </summary>	static public float QuadraticEaseOut(float p)	{		return -(p * (p - 2));	}		/// <summary>	/// Modeled after the piecewise quadratic	/// y = (1/2)((2x)^2)             ; [0, 0.5)c	/// y = -(1/2)((2x-1)*(2x-3) - 1) ; [0.5, 1]	/// </summary>	static public float QuadraticEaseInOut(float p)	{		if(p < 0.5f)		{			return 2 * p * p;		}		else		{			return (-2 * p * p) + (4 * p) - 1;		}	}		/// <summary>	/// Modeled after the cubic y = x^3	/// </summary>	static public float CubicEaseIn(float p)	{		return p * p * p;	}		/// <summary>	/// Modeled after the cubic y = (x - 1)^3 + 1	/// </summary>	static public float CubicEaseOut(float p)	{		float f = (p - 1);		return f * f * f + 1;	}		/// <summary>		/// Modeled after the piecewise cubic	/// y = (1/2)((2x)^3)       ; [0, 0.5)	/// y = (1/2)((2x-2)^3 + 2) ; [0.5, 1]	/// </summary>	static public float CubicEaseInOut(float p)	{		if(p < 0.5f)		{			return 4 * p * p * p;		}		else		{			float f = ((2 * p) - 2);			return 0.5f * f * f * f + 1;		}	}		/// <summary>	/// Modeled after the quartic x^4	/// </summary>	static public float QuarticEaseIn(float p)	{		return p * p * p * p;	}		/// <summary>	/// Modeled after the quartic y = 1 - (x - 1)^4	/// </summary>	static public float QuarticEaseOut(float p)	{		float f = (p - 1);		return f * f * f * (1 - p) + 1;	}		/// <summary>	// Modeled after the piecewise quartic	// y = (1/2)((2x)^4)        ; [0, 0.5)	// y = -(1/2)((2x-2)^4 - 2) ; [0.5, 1]	/// </summary>	static public float QuarticEaseInOut(float p) 	{		if(p < 0.5f)		{			return 8 * p * p * p * p;		}		else		{			float f = (p - 1);			return -8 * f * f * f * f + 1;		}	}		/// <summary>	/// Modeled after the quintic y = x^5	/// </summary>	static public float QuinticEaseIn(float p) 	{		return p * p * p * p * p;	}		/// <summary>	/// Modeled after the quintic y = (x - 1)^5 + 1	/// </summary>	static public float QuinticEaseOut(float p) 	{		float f = (p - 1);		return f * f * f * f * f + 1;	}		/// <summary>	/// Modeled after the piecewise quintic	/// y = (1/2)((2x)^5)       ; [0, 0.5)	/// y = (1/2)((2x-2)^5 + 2) ; [0.5, 1]	/// </summary>	static public float QuinticEaseInOut(float p) 	{		if(p < 0.5f)		{			return 16 * p * p * p * p * p;		}		else		{			float f = ((2 * p) - 2);			return 0.5f * f * f * f * f * f + 1;		}	}		/// <summary>	/// Modeled after quarter-cycle of sine wave	/// </summary>	static public float SineEaseIn(float p)	{		return Mathf.Sin((p - 1) * HALFPI) + 1;	}		/// <summary>	/// Modeled after quarter-cycle of sine wave (different phase)	/// </summary>	static public float SineEaseOut(float p)	{		return Mathf.Sin(p * HALFPI);	}		/// <summary>	/// Modeled after half sine wave	/// </summary>	static public float SineEaseInOut(float p)	{		return 0.5f * (1 - Mathf.Cos(p * PI));	}		/// <summary>	/// Modeled after shifted quadrant IV of unit circle	/// </summary>	static public float CircularEaseIn(float p)	{		return 1 - Mathf.Sqrt(1 - (p * p));	}		/// <summary>	/// Modeled after shifted quadrant II of unit circle	/// </summary>	static public float CircularEaseOut(float p)	{		return Mathf.Sqrt((2 - p) * p);	}		/// <summary>		/// Modeled after the piecewise circular function	/// y = (1/2)(1 - Math.Sqrt(1 - 4x^2))           ; [0, 0.5)	/// y = (1/2)(Math.Sqrt(-(2x - 3)*(2x - 1)) + 1) ; [0.5, 1]	/// </summary>	static public float CircularEaseInOut(float p)	{		if(p < 0.5f)		{			return 0.5f * (1 - Mathf.Sqrt(1 - 4 * (p * p)));		}		else		{			return 0.5f * (Mathf.Sqrt(-((2 * p) - 3) * ((2 * p) - 1)) + 1);		}	}		/// <summary>	/// Modeled after the exponential function y = 2^(10(x - 1))	/// </summary>	static public float ExponentialEaseIn(float p)	{		return (p == 0.0f) ? p : Mathf.Pow(2, 10 * (p - 1));	}		/// <summary>	/// Modeled after the exponential function y = -2^(-10x) + 1	/// </summary>	static public float ExponentialEaseOut(float p)	{		return (p == 1.0f) ? p : 1 - Mathf.Pow(2, -10 * p);	}		/// <summary>	/// Modeled after the piecewise exponential	/// y = (1/2)2^(10(2x - 1))         ; [0,0.5)	/// y = -(1/2)*2^(-10(2x - 1))) + 1 ; [0.5,1]	/// </summary>	static public float ExponentialEaseInOut(float p)	{		if(p == 0.0 || p == 1.0) return p;				if(p < 0.5f)		{			return 0.5f * Mathf.Pow(2, (20 * p) - 10);		}		else		{			return -0.5f * Mathf.Pow(2, (-20 * p) + 10) + 1;		}	}		/// <summary>	/// Modeled after the damped sine wave y = sin(13pi/2*x)*Math.Pow(2, 10 * (x - 1))	/// </summary>	static public float ElasticEaseIn(float p)	{		return Mathf.Sin(13 * HALFPI * p) * Mathf.Pow(2, 10 * (p - 1));	}		/// <summary>	/// Modeled after the damped sine wave y = sin(-13pi/2*(x + 1))*Math.Pow(2, -10x) + 1	/// </summary>	static public float ElasticEaseOut(float p)	{		return Mathf.Sin(-13 * HALFPI * (p + 1)) * Mathf.Pow(2, -10 * p) + 1;	}		/// <summary>	/// Modeled after the piecewise exponentially-damped sine wave:	/// y = (1/2)*sin(13pi/2*(2*x))*Math.Pow(2, 10 * ((2*x) - 1))      ; [0,0.5)	/// y = (1/2)*(sin(-13pi/2*((2x-1)+1))*Math.Pow(2,-10(2*x-1)) + 2) ; [0.5, 1]	/// </summary>	static public float ElasticEaseInOut(float p)	{		if(p < 0.5f)		{			return 0.5f * Mathf.Sin(13 * HALFPI * (2 * p)) * Mathf.Pow(2, 10 * ((2 * p) - 1));		}		else		{			return 0.5f * (Mathf.Sin(-13 * HALFPI * ((2 * p - 1) + 1)) * Mathf.Pow(2, -10 * (2 * p - 1)) + 2);		}	}		/// <summary>	/// Modeled after the overshooting cubic y = x^3-x*sin(x*pi)	/// </summary>	static public float BackEaseIn(float p)	{		return p * p * p - p * Mathf.Sin(p * PI);	}		/// <summary>	/// Modeled after overshooting cubic y = 1-((1-x)^3-(1-x)*sin((1-x)*pi))	/// </summary>		static public float BackEaseOut(float p)	{		float f = (1 - p);		return 1 - (f * f * f - f * Mathf.Sin(f * PI));	}		/// <summary>	/// Modeled after the piecewise overshooting cubic function:	/// y = (1/2)*((2x)^3-(2x)*sin(2*x*pi))           ; [0, 0.5)	/// y = (1/2)*(1-((1-x)^3-(1-x)*sin((1-x)*pi))+1) ; [0.5, 1]	/// </summary>	static public float BackEaseInOut(float p)	{		if(p < 0.5f)		{			float f = 2 * p;			return 0.5f * (f * f * f - f * Mathf.Sin(f * PI));		}		else		{			float f = (1 - (2*p - 1));			return 0.5f * (1 - (f * f * f - f * Mathf.Sin(f * PI))) + 0.5f;		}	}		/// <summary>	/// </summary>	static public float BounceEaseIn(float p)	{		return 1 - BounceEaseOut(1 - p);	}		/// <summary>	/// </summary>	static public float BounceEaseOut(float p)	{		if(p < 4/11.0f)		{			return (121 * p * p)/16.0f;		}		else if(p < 8/11.0f)		{			return (363/40.0f * p * p) - (99/10.0f * p) + 17/5.0f;		}		else if(p < 9/10.0f)		{			return (4356/361.0f * p * p) - (35442/1805.0f * p) + 16061/1805.0f;		}		else		{			return (54/5.0f * p * p) - (513/25.0f * p) + 268/25.0f;		}	}		/// <summary>	/// </summary>	static public float BounceEaseInOut(float p)	{		if(p < 0.5f)		{			return 0.5f * BounceEaseIn(p*2);		}		else		{			return 0.5f * BounceEaseOut(p * 2 - 1) + 0.5f;		}	}} 	
 |